Skip to menu Skip to content Skip to footer
News

High-voltage technology to supercharge the mining industry

14 May 2024
Rocks going down a funnel towards a bright light.

The High Voltage Pulse technology being used to break mineralised ores.

Zapping rocks with a high-voltage pulse – similar to a lightning strike – could be the answer to decarbonising the mining industry according to researchers from The University of Queensland.

Researchers from UQ’s Sustainable Minerals Institute have developed High Voltage Pulse (HVP) technology, which uses a short-pulsed discharge similar to a lightning strike, to selectively break mineralised ores while keeping barren rocks intact.

Project leader Dr Christian Antonio said their HVP technology, in the process of being commercialised, could significantly reduce energy consumption and essentially help decarbonise the mining industry.

“Mineral processing is the most energy intensive part of mining and is a significant consumer of energy globally,” Dr Antonio said.

“This technology makes it possible to choose the material which should go to the processing plant and leave behind material which contains little or no metal.

“By separating ‘barren’ rocks from the valuable mineralised rocks, which are weakened by the lightning strikes, we can cut down processing time and make the whole process more energy efficient.

“These efficiencies are noticeable throughout the mining process but, in the grinding stage in particular, our research has shown a reduction of approximately 30 per cent in processing time and energy consumption.”

Dr Antonio said the concept behind HVP technology was similar to lightning attractors – or how lightning was more likely to strike someone holding a metallic umbrella.

“Electrical energy automatically targets the conductive mineral particles within a rock and breaks up the rock as it makes its way to them,” he said.

“To deliver this energy we also electrify a conventional piece of mineral processing equipment that sorts rocks by size, meaning we are simultaneously zapping the rocks and sorting the fragments.

“This is a more efficient way to deliver the energy while achieving the over one hundred tonne per hour throughputs required by the mining industry.”

HVP technology is one of the main focuses of UQ’s Julius Kruttschnitt Mineral Research Centre’s Separation Group, which develops mineral separation processes that improve profitability and minimise environmental impact.  

Group Leader Associate Professor Kym Runge said there was wide industry interest in how the technology could decarbonise operations.

“A key part of this project is showing our partners that the technology can feasibly be added to their plants,” Associate Professor Runge said.   

“We are currently working on building a business case that will quantify the benefits of this technology, then we will design a HVP unit integrating our technology and progress that to commercialisation.

“Ultimately the plan is to build a pilot plant and demonstrate the benefits of HVP at one of our sponsor’s sites.”

This research is funded through the Resources Technology and Critical Minerals Trailblazer program, which also has the support of several mining industry partners, including Newmont and JKTech.

Related articles

A graphic showing graphics about climate in mid air as a finger points toward one that says net zero.

Australia tracking a decade behind 2050 net zero target

Independent analysis of Australia’s path to net zero has found progress is being made, but transitioning to renewable energy and cleaner industry and transport needs to happen much faster to reach the 2050 target.
12 December 2025
decorative
Feature

All paths can lead to agriculture

There’s no single road into agriculture. For some, it’s a career passed down through generations. For others, it’s a path they discover later, drawn in by the science, a desire for sustainability or a chance to make a real difference.
12 December 2025

Media contact

Subscribe to UQ News

Get the latest from our newsroom.